
  

Microorganisms 2019, 7, 597; doi:10.3390/microorganisms7120597 www.mdpi.com/journal/microorganisms 

Article 

Gut Anaerobes Capable of Chicken  
Caecum Colonisation 
Tereza Kubasova 1, Miloslava Kollarcikova 1, Magdalena Crhanova 1, Daniela Karasova 1,  
Darina Cejkova 1, Alena Sebkova 1, Jitka Matiasovicova 1, Marcela Faldynova 1, Frantisek Sisak 1, 
Vladimir Babak 1, Alexandra Pokorna 2, Alois Cizek 2,3 and Ivan Rychlik 1,* 

1 Veterinary Research Institute, 621 00 Brno, Czech Republic; kubasova@vri.cz (T.K.);  
kollarcikova@vri.cz (M.K.); crhanova@vri.cz (M.C.); karasova@vri.cz (D.K.); cejkova@vri.cz (D.C.); 
asebkova@vri.cz (A.S.); matiasovicova@vri.cz (J.M.); faldynova@vri.cz (M.F.); sisak@vri.cz (F.S.); 
babak@vri.cz (V.B.) 

2 Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine,  
University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic; pokornaa@vfu.cz  

3 Central European Institute of Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences 
Brno, 612 42 Brno, Czech Republic; cizeka@vfu.cz 

* Correspondence: rychlik@vri.cz; Tel.: +420 533331201 

Received: 29 October 2019; Accepted: 18 November 2019; Published: 21 November 2019 

Abstract: Chicks in commercial production are highly sensitive to enteric infections and their 
resistance can be increased by administration of complex adult microbiota. However, it is not known 
which adult microbiota members are capable of colonising the caecum of newly hatched chicks. In 
this study, we therefore orally inoculated chicks with pure cultures of 76 different bacterial isolates 
originating from chicken caecum on day 1 of life and determined their ability to colonise seven days 
later. The caecum of newly hatched chickens could be colonised by bacteria belonging to phyla 
Bacteroidetes, Proteobacteria, Synergistetes, or Verrucomicrobia, and isolates from class 
Negativicutes (phylum Firmicutes). On the other hand, we did not record colonisation with isolates 
from phyla Actinobacteria and Firmicutes (except for Negativicutes), including isolates from 
families Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, and Lactobacillaceae. 
Representatives of genera commonly used in probiotics such as Lactobacillus, Enterococcus, or Bacillus 
therefore did not colonise the chicken intestinal tract after a single dose administration. Following 
challenge with Salmonella enterica serovar Enteritidis, the best protecting isolates increased the 
chicken’s resistance to S. Enteritidis only tenfold, which, however, means that none of the tested 
individual bacterial isolates on their own efficiently protected chicks against S. Enteritidis. 
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1. Introduction 

In animal species where parents raise their offspring, parents alone act as an important source 
of gut microbiota. This is also the case for chickens, who evolved for millions of years to be hatched 
in a nest in contact with a hen. However, contact between hen and chicks has been interrupted in 
commercial production, and the intestinal tract of commercially hatched chicks is gradually colonised 
from environmental sources only [1–4]. However, if the chicks are provided microbiota from a hen 
experimentally, they can be colonised by adult-type microbiota from the very first days of life [5,6]. 

The specific development of chick gut microbiota in commercial production is a reason why 
commercially hatched chicks are highly sensitive to infections, such as pathogenic Escherichia coli, 
Clostridium perfringens, or Salmonella, while chicks inoculated with faecal microbiota of adult hens are 
resistant to these infections [5,7–9]. This phenomenon, known as competitive exclusion, is well 
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established in chickens [10]. However, administration of complex competitive exclusion microbiota 
from adult hens to newly hatched chickens, though effective in preventing infections, is not widely 
accepted. The reason is that such products may contribute to the spread of yet unknown pathogens. 
In agreement, we have shown that representatives of Campylobacteriales are present at a higher 
abundance in the chicks inoculated with the caecal content of donor hens than in the microbiota of 
the donor hen itself [6]. This issue can be avoided if products consisting of defined bacterial strains 
were used [11]. In poultry, such products contain mostly Lactobacilli, Enterococci, or Bacilli [12–14], 
although there are reports questioning their real protective effect against infections [15,16]. Whether 
this is due to the low microbial complexity of products consisting of one or a few strains or whether 
this is caused by inappropriate strain selection is not known. 

Repeatedly confirmed efficacy of competitive exclusion products together with accumulating 
knowledge on chicken microbiota composition led us to systematic culture of individual chicken gut 
microbiota members [17,18]. Because previous studies indicated that not all bacterial species present 
in the faeces of adult hens efficiently colonise the chicken caecum [5,6], in this study, we tested pure 
cultures of 76 chicken gut anaerobes for their ability to colonise the caecum of newly hatched chicks. 
Using this approach, we addressed whether the tested bacterial isolates could (i) efficiently colonise 
the chicken caecum during the first week of life, and (ii) protect chicks against Salmonella enterica 
serovar Enteritidis infection. Conclusions were rather unexpected. The caecum of newly hatched 
chickens could be populated only with Gram-negative bacteria belonging to phyla Bacteroidetes, 
Proteobacteria, Synergistetes, or Verrucomicrobia, and Gram-positive isolates from class 
Negativicutes. On the other hand, chickens could not be colonised experimentally with Gram-
positive isolates from phyla Actinobacteria or Firmicutes (except for those from class Negativicutes), 
including Lactobacilli, Enterococci, and Bacilli, which are commonly used as probiotics in chickens [12–
14]. 

2. Materials and Methods  

2.1. Ethics Statement 

The handling of animals in the study was performed in accordance with current Czech 
legislation (Animal Protection and Welfare Act No. 246/1992 Coll. of the Government of the Czech 
Republic). The specific experiments were approved by the Ethics Committee of the Veterinary 
Research Institute followed by the Committee for Animal Welfare of the Ministry of Agriculture of 
the Czech Republic on 31 March 2016 (permit number 4/2016) and on 15 January 2018 (permit number 
MZe1922). 

2.2. Bacterial Isolates 

Seventy-six chicken gut anaerobes characterised previously [17] were used for oral inoculation 
of chicks on the day of hatching. Of these, 54 were used for oral inoculation of chickens as individual 
cultures. An additional 15 isolates were tested both as individual cultures and as a part of defined 
mixtures, and the remaining 7 isolates were tested only as a part of defined mixtures (Table S1). 

2.3. Chicken Inoculation with Gut Anaerobes and S. Enteritidis Challenge 

In all experiments, newly hatched male ISA Brown chicks were obtained from a local hatchery 
on the day of hatching. In total, 542 chicks were used in this study. Of these, 474 were inoculated with 
one of the tested isolates or their mixtures, and 68 chicks served as noninoculated controls across the 
whole study. The whole study was accomplished in 10 different experimental batches performed 
from 2016 to 2018 (Table S2). Chicks were reared in plastic boxes with free access to water and feed 
in air-conditioned rooms with a controlled light and temperature regime and with filtered air supply. 
Temperature was set to 30 °C during the first week of life and to 28 °C in the second week of life. The 
light regime was set to 24 h light in the first week of life and 22 h of light during the second week of 



Microorganisms 2019, 7, 597 3 of 12 

 

life. The same standard starter feed formula for raising chickens during the first days of life was 
provided to chicks in all experiments (Table S3). 

Chicks in experimental groups were orally inoculated on day 1 of life with 100 µL of a particular 
anaerobe (approx. 107 CFU) resuspended in prereduced anaerobically sterilised (PRAS) solution to 
OD600nm = 1 (PRAS solution composition - 0.1 g magnesium sulfate heptahydrate, 0.2 g monobasic 
potassium phosphate, 0.2 g potassium chloride, 1.15 g dibasic sodium phosphate, 3.0 g sodium 
chloride, 1.0 g sodium thioglycolate, 0.5 g L-cysteine, 1000 mL distilled water; final pH 7.5 +/− 0.2 at 
25 °C). The cultures were washed from Wilkins–Chalgren agar (WCHA) after 3 days of incubation 
under anaerobic conditions at 37 °C as described previously [17]. Chicks in control groups were kept 
under the same conditions, but in separate rooms and without any treatment on day 1. On day 8 of 
life, half of the chicks in each group were euthanized, and caecal contents were frozen at −20 °C to 
examine caecal microbiota composition. In addition, sections of caecal tissue were collected in 
RNALater (Qiagen, Hilden, Germany) and stored at −80 °C prior to RNA purification. The remaining 
chicks were orally infected with S. Enteritidis, and the experiment was terminated 4 days 
postinfection. 

2.4. Oral Inoculation with Defined Mixtures of Gut Anaerobes 

In addition, selected gut anaerobes were also tested in mixtures. The isolates were grown 
separately and were mixed in an anaerobic cabinet Bactron600 (Sheldon Manufacturing Inc., 
Cornelius, OR, USA) to form the inoculum just prior to administration. In the first experiment, the 
chicks were inoculated with a mixture of bacteria cultured for 10 days (instead of the routine 3-day 
culture), testing whether stationary phase cells or spore-enriched cultures might affect their ability to 
colonise (see Table S1 for the composition of L10 and C10 mixtures). Next, we tested whether 
incubation of spore forming bacteria under nutrient-limited conditions might increase their potential 
to colonise chicks. Therefore, seven isolates were grown for 3 days on WCHA agar and thereafter 
resuspended either in sterile distilled water or sterile PRAS solution for 2 days before mixing and 
using as inoculum (Clost mixture in Table S1). The rest of these experiments were performed exactly 
as described above for individual isolates, i.e., newly hatched chicks were inoculated on day 1 of life 
with the mixture, half of the inoculated chicks were euthanised on day 8 to check for colonisation, 
and the second half of chicks was challenged with S. Enteritidis. Four days later, i.e., when the chicks 
were 12 days old, the experiment was terminated, caecal contents were collected, and Salmonella 
counts were determined. 

In the last experiment with defined mixtures, we tested whether inoculation of chicks older than 
one day and initially precolonised with mostly Gram-negative bacteria might enable Gram-positive 
isolates to successfully colonise. The chicks were therefore inoculated with a mixture designated as 
BVL (Table S1) on day 1, followed by Clost mixture on day 8 of life. 

2.5. Salmonella Enteritidis Challenge 

S. Enteritidis challenge was performed orally with 1 × 107 CFU S. Enteritidis 147 spontaneously 
resistant to nalidixic acid in 0.1 mL inoculum [19]. Four days after infection, the chicks were 
euthanised under chloroform anesthesia by cervical dislocation, and during necropsy, 0.5 g of caecum 
was collected to enumerate S. Enteritidis. In addition, sections of caecal tissue were collected in 
RNALater (Qiagen, Hilden, Germany) and stored at −80 °C prior to RNA purification. 

2.6. Chicken Gene Expression 

The chicken inflammatory response in the caecum was determined by quantitative reverse 
transcribed PCR (Qiagen, Hilden, Germany) quantifying the expression of extracellular fatty acid 
binding protein (ExFABP) as described previously [5]. This gene was selected due to its high basal 
expression in the caecum of chickens and also high induction following S. Enteritidis challenge [20]. 
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2.7. Sequencing of V3/V4 Region of 16S rRNA Genes 

Caecal contents were homogenised in a MagNALyzer (Roche, Prague, Czech Republic). The 
DNA was then extracted using a QIAamp DNA Stool Mini Kit according to the manufacturer’s 
instructions (Qiagen, Hilden, Germany), and the DNA concentration was determined 
spectrophotometrically. DNA samples were diluted to 5 ng/mL and were used as a template in PCR 
with forward primer 5’- TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-MID-GT-
cctacgggnggcwgcag-3´ and reverse primer 5´-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-
MID-GT gactachvgggtatctaatcc-3´. 

The sequences in italics served for index and adapter ligation whereas the sequences in low case 
letters allowed the amplification over the V3/V4 region of 16S rRNA genes. MIDs represent different 
sequences of 5, 6, 7, or 9 base pairs in length, which were used to identify individual samples within 
the sequencing groups. PCR amplification was performed using a HotStarTaq Plus MasterMix kit 
(Qiagen, Hilden, Germany), and the resulting PCR products were purified using AMPure beads 
(Beckman Coulter, Prague, Czech Republic). In the next step, the concentration of PCR products was 
determined spectrophotometrically, the DNA was diluted to 100 ng/µL, and groups of 14 PCR 
products with different MID sequences were indexed with the same indices using Nextera XT Index 
Kit following the manufacturer’s instructions (Illumina, Cambridge, UK). Prior to sequencing, the 
concentration of differently indexed samples was determined using a KAPA Library Quantification 
Complete kit (Kapa Biosystems, Boston, MA, USA). All indexed samples were diluted to 4 ng/µL, 
and 20 pM phiX DNA was added to the final concentration of 5% (v/v). Sequencing was performed 
using MiSeq Reagent Kit v3 and MiSeq apparatus according to the manufacturer’s instructions 
(Illumina, Cambridge, UK). 

Quality trimming of the raw reads was performed using TrimmomaticPE v0.32 [21] with the 
following parameters: Window size of 4 with 15 as average quality and minimal reads length 150 bp. 
The FASTQ files generated after quality trimming were uploaded into QIIME software [22]. Forward 
and reverse sequences were joined with minimum 8 bp overlap. In the next step, chimeric sequences 
were predicted by the slayer algorithm implemented in QIIME and excluded from subsequent 
analysis. The resulting sequences were then classified by RDP Seqmatch with an OTU (operational 
taxonomic units) discrimination level set to 97%. Principal coordinate analysis (PCoA) implemented 
in QIIME was used for data visualisation. 

2.8. Statistics 

To identify to which OTU an anaerobe used for inoculation belonged, a set of 76 “artificial” 
samples, each containing a single sequence of an anaerobe used for the inoculation, was included in 
the QIIME calculation. Partial 16S rRNA sequences of each anaerobe were thus assigned to particular 
OTUs, and the OTU abundance was compared in inoculated and control chickens by the 
nonparametric Mann–Whitney U test. In addition to statistical significance, differentially abundant 
OTUs must have been present in at least 0.1% average abundance in the microbiota of inoculated 
chicks, and the difference in their abundance in inoculated and control chicks must have been 10-fold 
or higher. The inflammatory response to colonisation with the tested anaerobes and to S. Enteritidis 
infection in inoculated and control chicks was evaluated by a Kruskal–Wallis test, followed by Dunn’s 
post hoc test. The likelihood of the ability to colonise and protect against S. Enteritidis challenge was 
tested by Chi2-test. In all cases, comparisons with p values lower than 0.05 were considered 
significant. 

3. Results 

3.1. Inoculation of Newly Hatched Chickens with Individual Bacterial Isolates 

Altogether, 76 isolates were used for oral inoculation of chicks on day 1 of life. Using PCoA for 
visualisation of gut microbiota composition in inoculated and control chicks on day 8 of life, the 
majority of inoculated chicks clustered together with noninoculated controls, i.e., isolates used for 
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their inoculation likely did not colonise (Figure 1A). When the abundance of particular OTU 
representing the isolates used for oral inoculation was compared in inoculated and control chickens 
by the Mann–Whitney U test, only 25 isolates were capable of colonisation of the chicken caecum 
during the first week of life. These included 18 isolates belonging to phylum Bacteroidetes, 3 isolates 
belonging to phylum Firmicutes class Negativicutes, two isolates of Desulfovibrio (phylum 
Proteobacteria), and Akkermansia and Cloacibacillus belonging to phyla Verrucomicrobia and 
Synergistetes, respectively (Table 1). Except for Negativicutes, we did not record colonisation of 
chicks seven days after inoculation with any isolate belonging to phylum Firmicutes and the families 
Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, or Erysipelotrichaceae. 

Although we tested each bacterial isolate only in 3–5 chicks, altogether, 59 out of 69 chicks 
inoculated with isolates belonging to phylum Bacteroidetes were efficiently colonised, while not a 
single chick out of 110 inoculated with any isolate belonging to phylum Firmicutes was colonised 
(except for those belonging to class Negativicutes). We also failed with successful colonisation of the 
caecum of newly hatched chicks with four tested isolates belonging to phylum Actinobacteria (Figure 
1C). Unweighted PCoA analysis showed that successful colonisation was of a low effect on the 
composition of other microbiota members as colonised, noncolonised, and control chicks were 
randomly distributed in the plot (Figure 1B). The apparent separation of some noncolonised chicks 
from colonised chicks was caused by minor experiment-to-experiment variation, similar to a previous 
report [23] (Figure S1). 

 
Figure 1. Gut microbiota composition in the caecum of newly hatched chicks. (a) Weighted principal 
coordinate analysis (PCoA) indicating gut anaerobes capable of colonisation. Chicks inoculated with 
isolates not capable of colonisation (dark blue dots) clustered together with control chicks (red dots). 
Dots outside this cluster represent chicks that were inoculated with isolates capable of caecum 
colonisation (light blue dots), and these are identified by the numbers of their An codes (see Table S1). 
Green dots—chicks inoculated with different defined mixtures. Not all isolates capable of colonisation 
can be seen in panel (a) because the projection of some successfully colonised chicks along PC3 
resulted in an overlap with the cluster of control chicks. (b) According to unweighted PCoA, 
successful colonisation did not affect composition of the rest of the microbiota. The same colour 
coding is used in panels (a) and (b). (c). Cluster alignment based on the whole gene sequence of 16S 
rRNA genes and ability to colonise the chicken caecum during the first week of life. Isolates with a 
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green dot to the right of the dendrogram were detected in caeca of 8-day-old chicks. On the other 
hand, those with red dots were not detected. Families with a yellow, green, or light-blue background 
belong to phylum Firmicutes. Families with different shades of magenta belong to phylum 
Bacteroidetes. 

Table 1. List of isolates capable of colonising the chick caecum during the first week of life. 

Species ID Phylum % of Total Microbiota 
Alistipes onderdonkii An140 Bacteroidetes 34.24 
Alistipes onderdonkii An90 Bacteroidetes 33.54 
Alistipes senegalensis An31A Bacteroidetes 78.03 
Alistipes senegalensis An66 Bacteroidetes 1.74 
Bacteroides caecicola An768 Bacteroidetes 63.01 

Bacteroides clarus An43 Bacteroidetes 29.92 
Bacteroides dorei An41 Bacteroidetes 52.51 

Bacteroides ovatus An161 Bacteroidetes 31.35 
Bacteroides uniformis An67 Bacteroidetes 23.85 

Bacteroides xylanisolvens An109 Bacteroidetes 13.09 
Bacteroides xylanisolvens An126 Bacteroidetes 4.96 
Odoribacter splanchnicus An45 Bacteroidetes 0.83 
Butyricimonas paravirosa An62 Bacteroidetes 0.72 

Barnesiella viscericola An22 Bacteroidetes 65.08 
Mediterranea massiliensis An20 Bacteroidetes 47.46 
Mediterranea massiliensis An47 Bacteroidetes 11.36 
Parabacteroides distasonis An199 Bacteroidetes 39.76 
Parabacteroides johnsonii An42 Bacteroidetes 25.18 
Megamonas funiformis An776 Firmicutes/Negativicutes 53.32 

Megamonas hypermegale An288 Firmicutes/Negativicutes 8.62 
Megasphaera elsdenii An286 Firmicutes/Negativicutes 0.98 
Desulfovibrio piger An401 Proteobacteria 1.64 

Desulfovibrio desulfuricans An276 Proteobacteria 0.65 
Akkermansia muciniphila An78 Verrucomicrobia 13.08 
Cloacibacillus porcorum An23 Synergistetes 0.25 

The ability to colonise ranged among tested isolates. The most efficient colonisers (Alistipes 
senegalensis An31A, Bacteroides caecicola An768, Bacteroides dorei An41, Barnesiella viscericola 
An22, and Megamonas funiformis An776) formed over 50% of total caecal microbiota on day 8 of age. 
The least effective colonisers (Odoribacter splanchnicus An45, Butyricimonas paravirosa An62, 
Megasphaera elsdenii An286, Desulfovibrio desulfuricans An276, and Cloacibacillus porcorum 
An23) formed less than 1% of total microbiota, but this was still significantly more than in control 
chicks (Table 1, Table S4). 

3.2. Additional Experiments to Test (In)Ability of Gram Positive Bacteria to Colonise The Chicken Caecum 

The failure of any isolate from families Lactobacillaceae, Erysipelotrichaceae, Lachnospiraceae, 
and Ruminococcaceae to colonise chicken caecum after experimental administration was quite 
unexpected because these bacterial strains are common gut microbiota members and are among the 
first colonisers of the chicken caecum [3]. We considered that either the life cycle of these bacterial 
species required ingestion of spores rather than vegetative cells, or conditions in the caecum of chicks 
on the day of hatching, e.g., presence of residual oxygen, were not permissive for their colonisation. 
The former possibility was tested in two different experiments. In the first experiment, L10 and C10 
mixtures of 10-day-old cultures (instead of 3-day-old cultures used in all previous experiments), 
enriched for stationary phase cells and spores, were used for the inoculation of newly hatched chicks 
(see Table S1 for the composition of L10 and C10 mixtures). Analysis of caecal microbiota seven days 
later showed that chicks inoculated with L10 or C10 mixture were not colonised by any isolate present 
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in these mixtures. In the second experiment, Clost mixture was prepared by resuspension and 
incubation of individual isolates in nutrient-limited PRAS solution or in water for two days at room 
temperature in an anaerobic cabinet (see Table S1 for the composition of Clost mixture). However, 
even after such treatment, none of the seven isolates present in the Clost mixture colonised the 
chicken caecum. 

To test the possibility that the caecum of newly hatched chicks was not permissive for 
Clostridiales due to the presence of residual oxygen, the chicks were first inoculated with BVL 
mixture containing bacteria mostly capable of colonisation (see Table S1 for the composition of BVL 
mixture), followed by inoculation with Clost mixture on day 8 of life. However, even in this 
experiment, none of the isolates present in the Clost mixture colonised the chicken caecum when 
checked on day 15 of life. 

3.3. Chicken Response to Colonisation with Tested Anaerobes 

If the tested isolates were commensals with probiotic potential, these should not have induced 
an inflammatory response characterised by increased expression of ExFABP [20]. Although ExFABP 
expression varied among the groups inoculated with different anaerobes, it was never induced to the 
levels induced by S. Enteritidis (compare y-axis scaling in Figure 2A,B). Despite this, significantly 
higher ExFABP expression than in control chicks was recorded in the chicks inoculated with 
Bacteroides clarus An43, Olsenella uli An270, and Enorma timonensis An5 (Figure 2A). However, because 
this happened in a single experiment and two of these species did not even colonise the chicken 
caecum, we concluded that the ExFABP expression was induced by other factor(s) and not by the 
isolates used for inoculation. 

 
Figure 2. Extracellular fatty acid binding protein (ExFABP) expression in the caecum of inoculated 
and challenged chickens. (a) ExFABP expression in the caecum of 8-day-old chicks inoculated with 
different anaerobes on day 1 of life. Groups of chicks were inoculated on the day of hatching, and 
seven days later, expression of ExFABP was determined in the caecum of inoculated chicks by 
quantitative RT-PCR. Light-blue columns: ExFABP expression in the chicks that were successfully 
colonised by indicated gut anaerobes. Dark blue columns: ExFABP expression in the chicks that were 
inoculated with anaerobes that did not colonise the chicken caecum. Red columns highlight ExFABP 
expression in control chicks included in each experiment batch (except for the experiment with L10 



Microorganisms 2019, 7, 597 8 of 12 

 

and C10 mixtures in which no noninoculated chicks were included). *—Significantly different 
expression from appropriate control (Cont Exp7) by Kruskal–Wallis test followed by Dunn’s post hoc 
test (p < 0.05). (b) ExFABP expression in the caecum of 12-day-old chicks inoculated with different 
anaerobes on day 1 of life and infected with S. Enteritidis on day 8. If the isolate used for inoculation 
on day 1 exhibited a protective effect, lower expression was expected in the colonised chicks 
compared to the controls. Light-blue columns: ExFABP expression in the chicks that were successfully 
colonised by the tested isolate. Dark blue columns: ExFABP expression in the chicks that were 
inoculated by isolates that did not colonise the chicken caecum. Red columns: ExFABP expression in 
noninoculated control chicks included in each experiment batch (except for the experiment with L10 
and C10 mixtures in which no noninoculated control chicks were included). *—Significantly different 
expression from the appropriate control (Cont Exp2) by Kruskal–Wallis test followed by Dunn’s post 
hoc test (p < 0.05). 

3.4. Chicken Response to S. Enteritidis Infection 

Although S. Enteritidis infection increased ExFABP expression, there were only four significant 
differences in ExFABP expression between inoculated and control chickens (Figure 2B). Lower 
ExFABP expression in response to S. Enteritidis infection than in control chicks was recorded in 
chicks inoculated with [Clostridium] saccharolyticum An14, Flavonifractor plautii An52, or [Eubacterium] 
cylindroides An64. However, none of these anaerobes efficiently colonised chicken caecum. On the 
other hand, ExFABP expression in Butyricimonas paravirosa An62-colonised and S. Enteritidis-
challenged chicks was significantly higher than in controls (Figure 2B). Because Butyricimonas 
paravirosa An62 was present in the caecum at the time of infection, this bacterium therefore did not 
protect chickens against S. Enteritidis infection and corresponding inflammatory response. 

Evaluation of S. Enteritidis counts in inoculated and control chicks was complicated by the fact 
that 3–5 chicks per group were challenged, and in some cases, other bacterial species overgrew S. 
Enteritidis on Xylose-Lysine-Deoxycholate (XLD) plates (Figure S2). To characterise the interaction 
of S. Enteritidis, chicken host, and gut microbiota, we therefore combined S. Enteritidis counts in the 
caecum and expression of ExFABP. When these two parameters were plotted against each other, the 
groups of chicks were divided into those with S. Enteritidis counts higher or lower than 107 CFU/g of 
caecal content and exhibiting a high or low inflammatory response according to ExFABP expression. 
A threshold value for ExFABP expression was defined as 10 times higher than average ExFABP 
expression prior to S. Enteritidis infection. This resulted in the formation of four different clusters 
(Figure 3A). 

 
Figure 3. Salmonella counts and chicken inflammatory response. (a) Each dot represents a group of 
chickens inoculated with a particular anaerobe whose position is defined by average S. Enteritidis 
counts (log10 CFU/g) and inflammatory response determined by ExFABP expression. Cluster 1 (red 
dots) is formed by the chickens that were inoculated with gut anaerobes that did not protect them 
against S. Enteritidis challenge (high S. Enteritidis count and high ExFABP expression). Cluster 2 
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(dark blue dots) comprised chicks that were inoculated with gut anaerobes that did not protect them 
against S. Enteritidis colonisation, but decreased chicken inflammatory response. Chickens in cluster 
3 (light blue dots) were inoculated with gut anaerobes, which protected them against S. Enteritidis 
colonisation, but did not decrease the chicken inflammatory response. Chickens in cluster 4 (green 
dots) were inoculated with gut anaerobes, which increased their resistance to S. Enteritidis 
colonisation without an excessive inflammatory response. Panel (b) represents the percentage of 
efficiently colonised chicks out of all inoculated belonging to clusters 1–4 defined in panel (a). The 
same colour coding in panels (a) and (b) is used. 

Cluster 1 comprised chicks with high S. Enteritidis counts and a high inflammatory response. 
These chicks were inoculated on day 1 of life with 37 different isolates, and only nine of them (24.32%) 
efficiently colonised the chicken caecum (Figure 3B). Cluster 2 comprised chicks with high S. 
Enteritidis counts, but a low inflammatory response. These chicks were inoculated with 24 different 
isolates, and six of them (Bacteroides dorei An41, Bacteroides xylanisolvens An109, Desulfovibrio 
desulfuricans An276, Megamonas hypermegale An288, Megasphaera elsdenii An286, and Mediterranea 
massiliensis An20) efficiently colonised the chicken caecum. Cluster 3 comprised chicks with low S. 
Enteritidis counts, but a high inflammatory response. These chicks were inoculated with six different 
isolates, and two of them (Alistipes onderdonkii An140, Akkermansia muciniphila An78) efficiently 
colonised the chicken caecum. Cluster 4 comprised chicks with low S. Enteritidis counts and a low 
inflammatory response. These chicks were inoculated with 16 different isolates, and eight of them 
(Bacteroides ovatus An161, Bacteroides clarus An43, Alistipes onderdonkii An90, Alistipes senegalensis 
An66, Alistipes senegalensis An31A, Megamonas funiformis An776, Parabacteroides distasonis An199, and 
Cloacibacillus porcorum An23) efficiently colonised the chicken caecum. 

4. Discussion 

In this study, we tested which bacterial isolates commonly found in chicken caecal microbiota 
could efficiently colonise the chicken caecum after an experimental, single dose administration on 
the day of hatching. Such information is important for understanding general principles of 
microbiota–host interactions and evidence-based design of next-generation probiotics. 

We have shown that chickens can be colonised with bacteria expressing the outer membrane 
present in Gram-negative bacteria and isolates from class Negativicutes belonging to Gram-positive 
Firmicutes. All the remaining Gram-positive isolates did not colonise the chicken caecum during the 
first week of life. The ability of Gram-negative bacteria to colonise corroborates earlier findings that 
characterised the bacterial species colonising the chicken caecum after administration of caecal 
extracts [5,6,24] or after contact with an adult hen [25]. The isolates that successfully colonised the 
caeca of chicks did not require any other microbiota members to co-colonise. These colonised the 
chicken caecum independently and their colonisation was of little influence on the colonisation of 
other microbiota members. The rather small effect on other microbiota members can also be seen in 
their ability to affect S. Enteritidis colonisation. Though some of the isolates decreased S. Enteritidis 
counts by one log of magnitude, this reduction must be considered as minor because colonisation 
with complex microbiota reduces Salmonella counts by five logs [5]. 

The inability of isolates belonging to families Lactobacillaceae, Lachnospiraceae, 
Ruminococcaceae, and Erysipelotrichaceae to colonise the chicken caecum was quite unexpected as 
such isolates are common microbiota members and belong to the first colonisers of the chicken 
caecum in commercially hatched chicks [1–3]. Moreover, Lactobacilli, Bacilli, and Enterococci are used 
as probiotics, although their positive effect on chicken gut health has not been always confirmed 
[15,16]. Several explanations for their inability to colonise are possible, although none of them 
conclusively explain the recorded observations. It is possible that isolates of families 
Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae have to enter the intestinal tract in the 
form of spores. When we addressed this, we did not record successful colonisation, although we 
cannot exclude that we did not meet the conditions required for spore formation of the tested isolates. 
It is also possible that conditions in the caeca of chicks during the first week of life are not permissive 
for the colonisation with Gram-positive bacteria. However, this contradicts epidemiological findings 
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showing that Lachnospiraceae and Ruminococcaceae belong among the first colonisers [1,3,4]. 
Moreover, we also did not record Lachnospiraceae and Ruminococcaceae colonisation when these 
were administered to chicks already precolonised with Bacteroides species. We also considered that 
there could be a mutual dependence among bacterial species from families Lachnospiraceae, 
Ruminococcaceae, and Erysipelotrichaceae, but even when we inoculated these isolates in mixtures, 
we did not record efficient colonisation. Perhaps the time window allowing initial colonisation of 
Lachnospiraceae, Ruminococcaceae, or Erysipelotrichaceae is available earlier during the chicken life, 
shortly after hatching. This would be consistent with the fact that commercial, newly hatched 
chickens in fact represent a heterogeneous group of chicks that may differ in their age up to 48 h. 
However, we also consider the hypothesis that bacterial species from these families may not 
permanently colonise the chicken caecum and have to be continuously supplied from the 
environment. 

No matter which of the explanations is/are correct, Gram-positive bacteria seem to be less 
suitable for probiotic products intended for a single dose administration, as these did not efficiently 
colonise chicken caecum under our experimental conditions. Instead, such products should consist 
mainly of Gram-negative bacteria, capable of efficient colonisation of chicken caecum, sources of 
which are limited in an environment. However, such products will have to consist of multiple 
carefully selected bacterial strains because individual strains only weakly protected chickens against 
pathogens like Salmonella. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Unweighted 
PCoA visualisation of gut microbiota composition in the caecum of newly hatched chicks. Figure S2: Salmonella 
counts in the caecum of 12-day-old chicks inoculated with different anaerobes on day 1 of life and challenged 
with S. Enteritidis on day 8. Table S1: OTU table of OTUs forming at least 0.05% of all microbiota in at least one 
of the tested samples. Table S2: List of strains used in this study. Table S3: Bacterial strains and numbers of chicks 
used in different experiments. Table S4: Feed composition, light, and temperature regime used during rearing. 
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