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A B S T R A C T

Chickens represent one of the most important sources of animal protein for the human population. However, 
chickens also represent one of the most important reservoirs of Salmonella for humans. Measures to decrease the 
Salmonella incidence in chickens are therefore continuously sought. In this study, we tested feed supplementation 
with a mixture of C1 to C12 monoacylglycerides. At 0.7 and 1.5 kg per ton of feed, such supplementation 
significantly decreased Salmonella counts in the caecum but not in the liver. The chickens were infected on day 4 
and the protective effect in the caecum was recorded on day 22 and 23 of life. Supplementation also decreased 
the inflammatory response of chickens to Salmonella infection determined by avidin, SAA, ExFABP, MMP7, IL1β, 
IL4I and MRP126 gene expression but did not affect immunoglobulin expression in the caecum. C1 to C12 
monoacylglycerides can be used as a feed supplement which, if continuously provided in feed, decrease Sal-
monella counts in chickens just prior slaughter.

Introduction

Poultry and chickens in particular represent one of the most common 
sources of animal proteins for humans worldwide. However, poultry 
also represents a reservoir of zoonotic agents such as Salmonella or 
Campylobacter. Chicken colonisation by these two agents is usually 
without any clinical signs (Desmidt et al., 1997; Awad et al., 2018), 
which means the presence of these pathogens in poultry flocks can be 
overlooked and these are then transferred to humans via the food chain.

Multiple strategies have been tested to reduce chicken colonisation 
with Salmonella (Neelawala et al., 2024). Vaccination is used the most 
frequently but due to the short life of broilers, this can be used effec-
tively only in egg layers or reproductive flocks (Pan et al., 2024). Pro-
biotics or competitive exclusion products can be used as another 
alternative but single species probiotics usually based on Lactobacillus, 
Enterococcus or Bacillus species are not too effective against Salmonella 
(Khan and Chousalkar, 2020; Juricova et al., 2022; Olsen et al., 2022) 
and complex competitive exclusion products, though effective, raise 
concerns because of their undefined composition (Methner et al., 1997; 
Ferreira et al., 2003). Defined probiotics consisting of species different 

from Lactobacillus or Bacillus are only gradually introduced (Kubasova 
et al., 2021; Volf et al., 2024a) and phages have not proved their efficacy 
in real conditions (Agape et al., 2024). However, there is great potential 
for the modification of feed composition by supplementation with 
components suppressing pathogen multiplication in the chicken intes-
tinal tract.

Different feed supplements have been tested in chickens including 
plant extracts or short- and medium-chain fatty acids or their esters with 
glycerol (monoacyl glycerides) (Van Immerseel et al., 2005; Varmuzova 
et al., 2015; Jackman et al., 2022). The latter supplements are similar in 
the mode of action (Jackman et al., 2022). Both fatty acid and monoacyl 
glycerides pass freely through the bacterial outer and cytoplasmic 
membrane. Inside the cell, fatty acids in the cytoplasm dissociate into 
the negatively charged residue of the acid and proton H+. The release of 
H+ results in acidification of the cytoplasm and interference with 
intracellular metabolism. The same action is expected for monoacyl 
glycerides, which, following the passage through the membranes, are 
cleaved by intracellular host enzymes and free fatty acid is released. 
Since glycerol feed supplementation provided conflicting results 
(Delgado et al., 2014; Ozdogan et al., 2014) and the comparison 
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between free capric acid and capric acid monoglyceride showed iden-
tical antibacterial effect in vitro (Thormar et al., 2006), fatty acids are 
central for antibacterial activity. Indeed, positive results with fatty acid 
supplementation have been repeatedly reported by different authors 
although conclusions of different studies may differ in the range of ef-
ficacy of particular fatty acids for specific target microorganisms (Van 
Immerseel et al., 2004a; Van Immerseel et al., 2004b; Thormar et al., 
2006). Unfortunately, if provided orally, fatty acids are resorbed by the 
host in the small intestine and do not efficiently reach the distal parts of 
the intestinal tract. This has been addressed by fatty acid encapsulation 
(Van Immerseel et al., 2005; Boyen et al., 2008; Onrust et al., 2020) or 
glycerol esterification resulting in monoacyl glycerides with delayed 
release of free fatty acids in the intestinal tract (Gomez-Osorio et al., 
2021).

Monoacylglycerides have been shown to inactivate both Gram- 
negative Escherichia coli and Gram-positive Listeria monocytogenes 
(Wang and Johnson, 1992; Wang et al., 2018). Due to their interactions 
with membranes, they are effective also against enveloped viruses 
(Hariastuti et al., 2010). Anti-Salmonella effects of monoacyl glycerides 
have been reported as well (Thormar et al., 2006; Chen et al., 2021). 
However, these studies used monoacyl glycerides for direct Salmonella 
inactivation, either in in vitro experiments (Thormar et al., 2006) or for 
carcass surface disinfection (Chen et al., 2021). The anti-Salmonella ef-
fect by feed supplementation has not been tested although a positive 
effect of monoacylglycerides on the alleviation of clinical signs of 
necrotic enteritis caused by Clostridium perfringens has been reported 
(Gharib-Naseri et al., 2021; Daneshmand et al., 2023).

In this study, we therefore tested feed supplementation with a unique 
mixture of short and medium carbon chain (C1 to C12) mono-
acylglycerides whether i) it will affect Salmonella colonisation in 
chickens and ii) it will decrease the inflammatory response to Salmonella 
infection. For both tested hypotheses, we recorded significant positive 
outputs although the effect was not numerically extensive.

Material and methods

Ethics statement

The handling of animals in the study was performed in accordance 
with current Czech legislation (Animal Protection and Welfare Act No. 
246/1992 Coll. of the government of the Czech Republic). The specific 
experiments were approved by the Ethics Committee of the Veterinary 
Research Institute and the Committee for Animal Welfare of the Ministry 
of Agriculture of the Czech Republic (permit number MZe2405 
approved on March 5, 2023).

Experimental design

The whole study was performed in 2 independent experiments. In 
both experiments, chickens in the control group were provided basal 
feed and two experimental groups were fed the basal feed supplemented 
with either 0.7 or 1.5 kg of C1-C12 monoacylglycerides per 1 000 kg of 
feed (Fortibac, Addicoo, Czech Republic). The product consisted of a 
mixture of equal amount of monoformin (C1), monopropionin (C3), 
monobutyrin (C4), monocaprylin (C8), monocaprin (C10) and mono-
laurin (C12). Mixture of monoacylglycerides was mixed with SiO2 used 
as a vehiculum in 65:35 weight/weight ratio. Supplemented feed was 
provided to the chickens throughout the whole experiment. There were 
24 newly hatched male ISA Brown egg laying chickens in each of the 3 
groups in the beginning of the first experiment, i.e. altogether 72 
chickens. The same numbers of chickens per group were used also in the 
second experiment. However, since an additional group of non-infected 
chickens fed a basal diet was included, there were 4 groups and alto-
gether 96 chickens in the repeated experiment. In addition, 3 chicks in 
each experiment were sacrificed on day 1 upon arrival to animal house 
to test for Salmonella negativity and all indeed tested negative.

On day 4 life, 6 chickens in each group were orally inoculated with 
107 CFU/mL of Salmonella Enteritidis 147 (S. Enteritidis) spontaneously 
resistant to nalidixic acid in 0.1 mL volume (except for the control group 
of non-infected chickens in the second experiment). Infected chicks were 
identified by leg rings and acted as seeder birds for the remaining con-
tact chicks in each group. Six contact chicks from each group were 
sacrificed 4, 11 and 18 days post infection. Seeder birds were sacrificed 
at the end of each experiment at 19 days post infection.

Sample collection

Birds were euthanised by carbon dioxide inhalation followed by 
cervical dislocation. During dissection, approx. 0.5 g of caecal content 
and 0.5 g of liver tissue were removed to determine Salmonella counts. In 
the second experiment, small pieces of the caecum were placed in 
RNALater and stored at -20 ◦C prior to RNA purification. Caecum was 
selected as major site of Salmonella colonisation in chickens. In addition, 
blood samples were collected immediately after decapitation. Following 
blood coagulation at 4 ◦C for 16 hours, the samples were centrifuged at 
2000x g and sera were collected and stored at -20 ◦C.

Salmonella culture

Caecal contents and liver tissue samples were homogenised in 5 mL 
peptone water, tenfold serially diluted and plated on Xylose Lysine 
Deoxycholate agar supplemented with nalidixic acid. S. Enteritidis col-
onies were counted after 48-hour incubation at 37 ◦C. All peptone water 
homogenates were incubated at 37 ◦C for this period as well. In the case 
of no Salmonella colonies after direct plating, peptone water homoge-
nates were processed according to ISO 6579 protocol for qualitative 
Salmonella detection. S. Enteritidis counts were logarithmically trans-
formed and samples positive only after ISO protocol were assigned a 
value of 1. Salmonella negative samples were given a value of 0.

ELISA quantification of serum amyloid A protein (SAA) in blood serum

Blood serum samples were collected after decapitation during dis-
sections and stored at -20 ◦C until used for the quantification of SAA by 
ELISA (Chicken SAA (serum amyloid A) ELISA Kit 96T, Fine Test). Prior 
to ELISA assay, serum samples were diluted 500 times in PBS and each 
sample was analysed in duplicate. SAA standard from the kit was used 
for the production of a calibration curve and SAA concentration in µg/ 
mL was calculated for each sample.

Quantitative reverse transcribed real time PCR (qPCR)

Samples of chicken caecal tissues (50–100 mg) were homogenised in 
TRI Reagent and RNA was recovered from the upper water phase 
following the instructions of the manufacturer (MRC). mRNA was 
immediately reverse transcribed into cDNA using M-MLV reverse tran-
scriptase (Invitrogen) and oligo (dT) primers. cDNA was diluted 10 
times with sterile water prior to real-time PCR. PCR was performed in 3 
µL volumes in 384-well microplates using QuantiTect SYBR Green PCR 
Master Mix (QIAGEN) and a NanoDrop pipetting station (Innovadyne) 
for PCR mix dispensing. Expression of 8 genes known as part of the 
chicken response to Salmonella infection was determined by qPCR. These 
included avidin (AVD), serum amyloid A (SAA), extracellular fatty acid 
binding protein (ExFABP), matrix methalloproteinase 7 (MMP7), inter-
leukin 1β (IL1β), IL-4 induced 1 protein (IL4I), macrophage migration 
inhibitory factor (MIF)-related protein 126 (MRP126) and light chain 
immunoglobulin (Ig λ) (Matulova et al., 2013; Volf et al., 2017; 
Elsheimer-Matulova et al., 2020; Volf et al., 2024b). The Ct values of the 
genes of interest were normalised (ΔCt) to a geometric mean of Ct value 
of 3 reference genes, TBP1, HMBS and ADA, and the relative expression 
of each gene of interest was calculated as 2ΔCt. All the primers are listed 
in Table 1.
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Statistics

Salmonella counts were evaluated separately for each experiment as 
well as combined in a single dataset. Salmonella counts in orally infected 
seeder birds were treated separately from the contact chickens. t-test 
was used to evaluate difference in S. Enteritidis counts in the caecum 
and liver of control and experimental chickens. t-test was used also for 
the comparison of chicken gene expression and SAA levels in blood 
serum.

Results

Monoacylglyceride supplementation and chicken resistance to Salmonella

Feed supplementation with a mixture of monoacylglycerides affected 
chicken resistance to Salmonella colonisation. Significantly higher Sal-
monella counts were recorded in the caeca of chickens fed diet with 1.5 
kg monoacylglycerides per metric ton than that in the control chickens 
in the first experiment on day 15. On the other hand, significantly lower 
Salmonella counts were recorded in the seeder birds fed a diet supple-
mented with 0.7 kg monoacylglycerides per metric ton on day 23 
(Fig. 1A).

In the repeated experiment, significantly lower Salmonella colonisa-
tion was recorded in the caeca of contact chickens from both experi-
mental groups on day 22. In addition, significantly lower Salmonella 
colonisation was recorded also in the caeca of seeder chickens from both 
experimental groups on day 23 (Fig. 1B).

When data from both experiments were combined, a significantly 
lower level of Salmonella colonisation was recorded in the caeca of 
contact and seeder chickens from both experimental groups on days 22 
and 23. Unlike caecal colonisation, the supplementation did not affect 
systemic spread of Salmonella since there were no significant differences 
in S. Enteritidis counts in the liver among different groups (Fig. 1). 
Monoacylglycerides therefore acted against Salmonella only in the in-
testinal tract and when Salmonella entered the circulation and systemic 
sites, Salmonella was protected against their activity.

Comparison of gene expression in infected and non-infected chickens

In the second experiment, caecal tissue samples were collected to 
determine inflammatory response to S. Enteritidis infection. In addition, 
acute response was characterised also by ELISA quantifying SAA in 
blood sera. Key differences in comparison to the control non-infected 
chickens were recorded on day 15 of life, i.e. 11 days post infection, 
when the highest inflammatory response was recorded in the chickens 
fed with a basal diet. An intermediate inflammatory response to Sal-
monella infection was detected in the chickens fed a diet with high 
monoacylglyceride supplementation and the lowest response among 
infected chickens was recorded in the chickens provided feed with low 
monoacylglyceride supplementation (Fig. 2). Specifically, significantly 
higher expression of avidin, SAA, IL1β, ExFABP and MRP126 was 

recorded in Salmonella infected chickens fed a basal diet than in the non- 
infected chickens on day 15. Chickens provided feed with a high amount 
of monoacylglycerides also mounted an inflammatory response since the 
expression of avidin, SAA, IL1β, ExFABP and MMP7 was significantly 
higher than in the non-infected chickens. Despite significant inductions, 
the increase in the expression in chickens fed a diet with high mono-
acylglyceride supplementation was numerically lower than that in 
chickens fed a basal diet. Chickens fed a high monoacylglyceride diet 
also exhibited significantly higher expression of IL4I on day 8 in com-
parison to those fed a basal diet.

IL1β was the only tested marker which was significantly more 
expressed in the chickens provided feed with low monoacylglyceride 
supplementation in comparison to the non-infected controls on day 15. 
Chickens in this group exhibited also a significantly higher level of 
avidin and MRP126 expression as early as on day 8.

Gene expression of Ig λ was not affected by Salmonella infection or 
feed supplementation.

Comparison of gene expression in infected chickens fed a basal and 
supplemented diet

A lower inflammatory response to Salmonella infection and therefore 
protective effect of tested supplements was confirmed also by the 
comparison of gene expression in Salmonella infected chickens fed basal 
and supplemented diet. Avidin, ExFABP and MMP7 were significantly 
less expressed in the infected chickens fed a diet with high mono-
acylglyceride and avidin, SAA and ExFABP were significantly less 
expressed in chickens fed a diet with low monoacylglycerides supple-
mentation on day 15 in comparison to chickens fed a basal, non- 
supplemented diet (Fig. 2). All this collectively showed that feed sup-
plementation reduced the inflammatory response to Salmonella infection 
although not to the levels recorded in the non-infected chickens.

ELISA quantification of SAA in blood serum

SAA was determined also in blood sera by ELISA. None of the com-
parisons in SAA levels between infected and non-infected chickens 
reached statistical significance (Fig. 2). However, when comparing re-
sults from real-time PCR in the caecum and ELISA in blood serum, the 
highest expression SAA levels were detected by both protocols in the 
infected chickens fed a basal diet on day 15 and in infected chickens fed 
the diet with low monoacylglyceride supplementation on day 22.

Discussion

Salmonellosis still belongs among the most common gastrointestinal 
disorders in humans. Since chickens represent one of the most common 
reservoirs of different Salmonella serovars, measures on how to improve 
gut health and decrease Salmonella prevalence in poultry are continu-
ously sought. Of extra value are the solutions which are simple and 
cheap to introduce, such as the use of different feed additives. Short and 
medium fatty acids and their monoesters with glycerol belong among 
such additives with a proven effect on growth performance, intestinal 
morphology, meat and egg quality (Fortuoso et al., 2019; Feng et al., 
2021a; Feng et al., 2021b; Chen et al., 2024; Kerr et al., 2024; Wang 
et al., 2024) as well as activity against Campylobacter, Salmonella or 
spoilage microbiota in vitro, or Clostridium perfringens and Campylobacter 
in vivo (Hilmarsson et al., 2006; Thormar et al., 2006; Namkung et al., 
2011; Thormar et al., 2011; Gomez-Osorio et al., 2021; Chen et al., 
2021; John et al., 2024)). Since the effect of monoacylglycerides against 
C. perfringens or Campylobacter in vivo was rather moderate, we expected 
the same in the case of Salmonella. This is why the seeder bird model, in 
which the contact chickens are subjected to lower infection pressure 
than the seeder birds directly inoculated with high doses of Salmonella, 
was used. Due to this model, rather low Salmonella counts were recorded 
4 days post infection and maximal colonisation occurred later, at 11 

Table 1 
List of primers used in this study.

Target 
gene

Forward primer Reverse primer

AVD CCTTTGGCTTCACTGTCAAT GCGAGTGAAGATGTTGATGC
SAA TAGTTTGCCTCACGCATGTC GCTTCGTGTTGCTCTCCATT
EXFABP CTTGCACATGATGAGGCTCT CAGCATTCATCAGCCATCC
MMP7 GATGATGCAATTAGAAGGGCTTT CCACCTCTTCCATCAAAAGGATA
MRP126 TGAAGCTCTTGATTGAGAAGCA CGAGATCCTTGAAGATTTGGTC
IL1b GAAGTGCTTCGTGCTGGAGT ACTGGCATCTGCCCAGTTC
IL4I1 GGAGAAGGACTGGTATGTGGAG GCTTCAGGTCAAACTGCCTTAT
IgL TGCAATGTGAGGACAGTGGT GAGGAGTCAACAGGCAGAGG
TBP1 TAGCCCGATGATGCCGTAT GTTCCCTGTGTCGCTTGC
HMBS GGCTGGGAGAATCGCATAGG TCCTGCAGGGCAGATACCAT
ADA TATCAACACCGATGACCCCC GCTGGACTGAGCTGCATTGA
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days post infection, although peak in Salmonella caecum colonisation is 
recorded usually 4 days post infection (Beal et al., 2004; Matulova et al., 
2013).

C1 to C12 monoacylglycerides did not increase chicken resistance to 
infection immediately. Instead, in both experiments, continuous in-feed 
administration resulted in lower Salmonella counts 18 and 19 days post 
infection in both experiments, even though the difference did not reach 
statistical significance in the first experiment due to high chicken to 
chicken variation. In addition, there was no effect of feed supplemen-
tation on Salmonella liver colonisation, likely due to the fact that mon-
oacylglycerides do not enter the circulation to affect Salmonella 

persistence in the liver. The fact that Salmonella counts decreased at a 
later time during fattening means that such treatment may effectively 
decrease chicken colonisation at the time of slaughter, similar to con-
clusions of Fernandez-Rubio et al, though they used sodium butyrate 
supplementation and not acylglycerides (Fernandez-Rubio et al., 2009). 
Beneficial effect of monoacylglyceride supplementation was observed 
also in laying hens at the late stage of egg production (Feng et al., 2021a; 
Wang et al., 2024).

Monoacylglycerides are known also for their anti-inflammatory ef-
fect (Kong et al., 2021; Chen et al., 2024; Kong et al., 2024). In agree-
ment, we recorded a lower inflammatory response in the chickens fed a 

Fig. 1. Salmonella counts in chickens fed differentially supplemented feed. Prolonged feed supplementation with monoacylglycerides increased chicken resistance to 
Salmonella colonisation. Significantly lower Salmonella counts were recorded in the caecum on day 23 in the seeder birds in the first experiment (Panel A). 
Significantly lower Salmonella counts were recorded on days 22 and 23S (“S” stands for Seeders) in the second (Panel B) and also when data from both experiments 
were combined (Panel C). Feed supplementation with monoacylglycerides did not affect S. Enteritidis dissemination and persistence in the liver (Panels A-C). * - 
significantly different (P < 0.05) from Salmonella counts in the caeca of chickens fed a basal, non-supplemented diet.
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diet supplemented with monoacylglycerides but we did not observe any 
effect on immunoglobulin expression though chickens respond to Sal-
monella and normal microbiota by the induction of immunoglobulins 
(Matulova et al., 2013; Volf et al., 2017; Volf et al., 2024b). It is difficult 
to make conclusions about direct anti-inflammatory effect of the sup-
plementation since the more likely explanation would be that the tested 
supplements acted against Salmonella and lower Salmonella counts 
caused a lower inflammatory response. However, even if this is the case, 
lower inflammation may keep resorptive functions of the gut fully pre-
served (Varmuzova et al., 2014).

The absence of an Ig response to Salmonella infection was likely 
caused by the model used. Contact chicks were infected with low doses 
of Salmonella at around day 10 of life and the older the chicks are, the 
more resistant to Salmonella infection they are (Beal et al., 2004; Crha-
nova et al., 2011). Ig response to commensal microbiota colonisation 
can be seen only in comparison of colonised and germ-free chickens 
(Volf et al., 2017) and differences in Ig expression among chickens 
colonised by complex microbiota of different composition is likely below 
the discrimination power of real-time PCR.

Conclusions

In this study, we have shown that feed supplementation with a 
mixture of C1 to C12 monoacylglycerides significantly reduced Salmo-
nella counts and corresponding inflammatory response in the caecum. 
The supplementation decreased Salmonella counts at around 3 weeks of 
age, which might be relevant for the presence of Salmonella in the 
chickens 10-14 days later at the time of slaughter. Monoacylglycerides 
did not protect chickens against Salmonella spread into systemic sites 
such as the liver and also did not affect natural level of immunoglobulin 
gene transcription in the caecum. Both tested supplementation doses, i.e. 
0.7 as well as 1.5 kg per ton of feed performed similarly. Considering 
other beneficial effects of monoacylglycerides (Thormar et al., 2006; 
Kong et al., 2021; Jackman et al., 2022; Daneshmand et al., 2023), these 
can be used as feed supplement also in the flocks facing issues with 
Salmonella.

Disclosures
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Fig. 2. Gene expression of selected inflammatory marker genes in the chicken caecum following Salmonella infection. Salmonella infection resulted in the induction of 
an inflammatory response on day 15 of life, i.e. 11 days post infection. A rather delayed onset of the inflammatory response was influenced by the established model 
of seeders and contact chickens. The highest inflammatory response was always recorded in the chickens fed a basal diet while supplementation of feed with 
monoacylglycerides resulted in an intermediate expression, in between of non-infected and infected, basal feed fed chickens (Panels A-H). Panel I - ELISA quanti-
fication of SAA in blood serum of Salmonella infected chickens fed differentially supplemented feed did not result in significant differences among individual groups 
of chickens, though numerically the highest levels of SAA on day 15 were recorded in the chickens fed a basal diet by both real-time PCR and ELISA (compare orange 
line for SAA in panel H and orange column on day 15 in panel I) and similarly, the numerically highest levels of SAA on day 22 were recorded in the chickens fed a 
diet with low monoacylglyceride supplementation (compare grey line for SAA and grey column on day 22). Six chickens in each group were analysed at each 
time point.
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